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Abstract— Breast cancer causes serious public health prob-
lems; it is the most common cancer among women worldwide.
Screening and early detection of signs of breast cancer increase
the chance of survival. Early diagnosis is a crucial task for
radiologists and physicians. Therefore, many computer-aided
detection and diagnosis (CADx) systems are being developed
to ensure the survival of radiologists’ decisions. In this article,
we describe a framework to automate assessment of suspicious
regions, detected in screening mammography, without having
carried out additional examinations, especially unnecessary biop-
sies in the case where the suspect regions are benign tumors.
The setup of the proposed framework is ordered as follows:
regions of interest (ROIs) have been segmented using a modified
K -means algorithm; the bidimensional empirical mode decom-
position (BEMD) algorithm is applied to derive many layers
[bidimensional intrinsic mode function (BIMF)] from ROIs.
Then, textural features are extracted from the obtained ROIs.
First, directly from segmented ROI, second from the ROI and
its sublayers (BIMFs + Residue). The features extracted in the
second time have been grouped into a bag descriptive of the
ROI under consideration. This bag is the input parameter of
the classification algorithm based on the support vector machine
(which has been confirmed to be beneficial for the classification
of breast cancer). The average obtained sensitivity, specificity,
accuracy, and area under the receiver operating characteristic
(ROC) curve (AUC) rates, are, respectively, 98.60%, 98.65%,
98.62%, and 98.23%. Generally, the experimental results in
INbreast, digital database of screening mammography (DDSM),
and Mammography Image Analysis Society (MIAS) datasets
demonstrate the robustness and the efficiency of the developed
framework compared to previous works in the literature and
have shown a significant advance.

Index Terms— Bidimensional empirical mode decomposition
(BEMD), breast cancer, computer-aided diagnosis, deep learning,
machine learning, mammography, texture feature.

I. INTRODUCTION

BREAST cancer causes serious problems of public health;
it is the most frequently diagnosed cancer among women

worldwide. According to the World Health Organization
(WHO),1 one in eight women is currently affected by breast
cancer [1], [2]. Breast cancer develops in three-quarters of
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cases in women over 40 years, this disease is the most common
and leading cause of death among women aged between 40
to 74 years.1

Actors in the medical field consider that increasing cure
chances, decreasing the rate of morbidity and mortality caused
by this disease are possible only if it is taken care of in
the early stages of its appearance. Therefore, specialists have
recommended early identification through a screening system.
In fact, the most widely used screening tool is mammography,
to ensure early detection of such breast changes. Consequently,
radiologists have been led to increase the frequency of mam-
mograms, especially for the most affected age groups. Gener-
ally, for each examination, four mammography images have
been performed, two views [Cranio Caudal (CC) and medio
lateral oblique MLO] per breast. This screening resulted in an
exponential increase in mammograms number performed.

Seeing the high number of mammograms, the diagnosis task
has become difficult for radiologists to handle. Mammogram
evaluation is a critical task, subjective, and highly dependent
on the radiologist’s expertise. For that, the rate of breast
cancer detection increases by about (15%–20%) with a sec-
ond reading [3]–[5]. Except that the number of radiologists
required for this job increases, the wait time is much longer,
and the related charge are increased. However, approximately
10%–30% of mammary lesions are missing in screening due to
limitations of human observation [6], [7]. Therefore, computer-
aided detection (CAD) systems have emerged that introduce
relatively novel technologies. These CADs have introduced
some novel functions into the mammography device that allow
for simple interpretation of mammograms. The systems also
assist radiologists in increasing sensitivity to (21%–23%) in
the detection of breast cancer [3], [6]. Therefore, they are
helpful when there is a swell between observers, observation
lack, or inability for double reading with two or more radiolo-
gists. Seeing exponential growth of new cases of breast cancer
throughout the validation of the relevance of the last decades
and after the CAD system’s relevance validation for early
breast cancer diagnosis. Much attention is devoted to this topic
as a scientific, bioinformatics, and biomedical investigation
axis. The goal of CAD systems is to assist radiologists in
evaluating breast abnormalities, to see an automatic diagnosis
based on the mammogram [8]–[11]. They have improved
the diagnosis of breast abnormalities (masses, calcifications,
microcalcification, architectural distortions, etc.). Many studies
have been investigated to develop the CAD system, [12]–[16].
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In fact, many CAD systems are based on artificial intelligence
to automate the diagnosis of breast abnormalities using mam-
mograms. The evaluation mammogram plays an important role
in the prognosis of breast cancer. Therefore, the mammograms
must be classified with maximum accuracy. Given the major
difficulty of this task, as it is subjective and highly depen-
dent on professional and human expertise. Therefore, in the
last years, several scientific research has focused to develop
automated classification methods, for the goal of helping radi-
ologists to augment diagnosis accuracy, minimize errors and
efforts [17]–[25]. These studies relate to the lives of human
beings, so a slight improvement in performance has a major
impact on the prognosis and research. Among the limitations
of such methods, are stability and precision, as they which are
still under discussion. On our side, in this article, we imple-
ment a framework to participate in automating regions of inter-
est (ROI) diagnosis based only on mammography screening,
and without the need for additional examinations, to know
unnecessary biopsies in the case that suspect regions are
benign. Multilayers based on bidimensional empirical mode
decomposition (BEMD) is a method variant that can be used
to solve the problems of feature extraction and selection.
The BEMD algorithm gives an optimal solution to describe
exactly ROIs and returns the classification step very easily
using machine learning. The rest of the article is arranged
as follows: Section II describes an overview of some previous
related work. Section III introduces the materials and methods
used. In Sections I–V, we present the experimental results of
the proposed method. The discussion is given in Section V.
Section VI summarizes the work of this article.

II. RELATED PREVIOUS WORKS

A. Bidimensional Empirical Mode Decomposition

Empirical mode decomposition (EMD) [26] is an approach
adapted to nonstationary time frequency analysis and has been
applied in various fields, i.e., biological [27], marine envi-
ronment [28], structural diagnosis [29], mechanical diagnosis
faults [30], [31] and other fields based on 1-D signal. In addi-
tion, Nunes et al. [2], [32] have introduced EMD in image
processing (2-D signal) and they have developed the algorithm
for 2-D decomposition in empirical mode (BEMD). This
algorithm has attracted the attention of several researchers.
Has been applied in image denoising [33]; image compres-
sion [34], [35]; image texture segmentation [36], [37], scaling
image [38]; extraction of image characteristics [39], [40];
texture synthesis [41]; and classification of image texture [17].

In this article, we have implemented the BEMD to describe
ROI in order to make the classification phase very easy given
the use of several layers in the same region. Section II-B intro-
duces some related previously developed methods of breast
abnormalities assessment. Numerous promising approaches
are emerging to solve the problems of assessing breast abnor-
malities in mammograms.

There are many methods of decomposition signals
and images (discrete cosine transform (DCT), Wavelets,
Fourier, etc.) which assume decomposition on a basis
given a priori. The major advantage of empirical modal

decomposition (EMD) is the ability to define decompositions
of the images, which do not depend on the choice of a
particular base. In addition, the EMD is particularly well
suited for the study of nonstationary signals. We will present
the original EMD algorithm whose efficiency is recognized
by the applications it allows processing. Similar to the EMD
of the 1-D signal, the BEMD for a 2-D image based on the
extrema that exist in the original image or obtained from the
first derivative of the original or the higher-order derivative,
to achieve the decomposition of the image signal. Distances
between extrema may provide information to describe the
image intrinsic length scales. The EMD method is an adaptive
decomposition that allows the decomposition of any signal into
a large set of intrinsic mode functions (IMFs) of the signals,
denoted bidimensional IMF (BIMF) [42].

Given a 2-D image denoted by I (m, n), the procedure of
the BEMD can be described as follows [2], [27], and [42].

1- Initialization: r0(m, n) = I (m, n) where (m, n) ∈
[0, M − 1] × [0, N − 1], M and N represent numbers
of the rank on the discrete image plane and j = 1 (index
number of BIMF);

2- Extract the j th I M F :

a) Initialization parameters, h j,0(m, n) = r j−1(m, n);
i = 1;

b) Obtain the local minima/maxima of h j,i−1(m, n);
c) Compute upper envelope and lower envelope fun-

tions by interpolate between local minima and
between maxima, respectively, to get two envelope
surfaces, Envmin,i−1(m, n) and Envmax,i−1(m, n) of
h j,i−1(m, n).

d) Compute the mean envelope surface of these
two envelope surfaces: Envmoy,i−1(m, n) =
(Envmin,i−1(m, n) + Envmax,i−1(m, n))/2;

e) Update the original signal h j,i(m, n) = h j,i−1−
Envmoy,i−1, i = i + 1;

f) Calculate stopping criterion SDi j ; (stan-
dard deviation) given by (1); SDi j =∑M

m=0

∑N
n=0

[
| h j,i−1(m, n) − h j,i(m, n) |2

h2
j,i−1(m, n)

]

g) Repeat steps b) to f) until the calculated SDi j is
less than a predetermined criterion standard deviation
(generally taken as 0.2-0.3) [43] and stop the iteration.
Therefore, represents an IMF; that is, im f j(m, n) =
hi, j (m, n);

3- Update this signal and obtain the residual signal
r j (m, n) = r j−1(m, n) − im f j (m, n);

4- If r j is not monotonic, go to step 2 with j = j + 1
otherwise, stop the process of BEMD the decomposition
is complete, finally obtain all IMF components.

5- When the decomposition is complet and the IMFs are
extracted through the sifting process, we can write the
original image I (m, n) as the sum of all IMFs and the
residual r j , given by: I (m, n) = ∑ j

k=1 im fk(m, n) +
r j (m, n).
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B. Breast Abnormalities Classification

Currently, many methods based on supervised learning
algorithms have been developed to assess breast abnormali-
ties [1], [20], [22], [25]. In our previous work [1], we have
proposed a CAD system to automate the diagnosis of breast
cancer using mammography images and multiple instances
learning algorithms. The proposed method contains the next
steps: in order, automatically segment ROIs, textural and
shape features are selected from detected ROIs, then classify
ROIs as “benign,” or “malignant,” by implementing multi-
ple instance learning (MIL) algorithms. Kayode et al. [22]
have developed a method to automate the classification of
mammograms based on a modified support vector machine.
In this study, the authors have extracted textural features from
mammograms using a gray level cooccurrence matrix in four
different angular directions: θ = 0◦, 45◦, 90◦, 135◦, with two
distances: D = 1, 2. Then support vector machine (SVM)
has been implemented to classify mammograms as normal,
benign, or malignant. Limits of this study that the authors
have implemented traditional techniques to extract features
and no improvement was observed in the quantitative results
obtained. Danala et al. [19] have implemented a method to
classify breast masses as malignant or benign using a contrast-
enhanced mammogram of the CAD scheme. In this study, the
authors have selected 109 features separated by features class,
which are tumor background density, tumor density related,
shape, and wavelet. Then to classify suspicious breast masses,
they have used a multilayer perceptron (MLP) based artifi-
cial neural network (ANN). The study novelties if compared
with previous CAD schemes of full field digital mammog-
raphy (FFDM) images are 1) segmentation technique used;
2) added lesion density heterogeneity features; 3) used average
image features computed from CC and MLO views; and
4) implement an interactive visual aid tool for CAD scheme
of contrast-enhanced digital mammography (CEDM) images.
The limitations of this study are that the results obtained
have a modest performance area under the receiver operating
characteristic (ROC) curve (AUC = 0.848 ± 0.038) compared
to the CAD scheme of low energy (LE) images with AUC =
0.753 ± 0.047. KULKARNI, Kulkarni and Stranieri [20] in
this work, the authors have developed an approach to classify
mammographic lesions in order to diagnose breast cancer.
They have used the three most common classifiers, MLP,
SVM, and K -nearest neighbors (KNNs). Rouhi et al. [25] in
this article, the authors have presented a method to diagnose
tumor benign or malignant using mammograms. First, they
have segmented ROIs. In the next stage, they have extracted
features from segmented tumors and applied genetic algo-
rithms (GAs) to select the appropriate ones. ANNs have
then been implemented to classify mammograms as benign
or malignant. The authors have achieved good performance:
the sensitivity, specificity, and accuracy rates are, respectively,
96.87%, 95.94%, and 96.47%. The obtained results in the
previous works demonstrate some limits of the proposed
CAD system. Abdelrahman et al. [44] have discussed in a
survey which could serve as a road map for developing
convolutional neural network (CNN)-based solutions to further

improve mammographic detection of breast cancer. In this
new work, we have obtained improvements in performance.
These improvements have been obtained due to the feature
extraction techniques that are used, by implementing the
BEMD algorithm.

III. MATERIALS AND METHODS

In this article, we propose an approach to automate assess-
ment abnormalities using mammograms, to suggest breast
cancer diagnosis. This approach contains the following steps:
we start by detecting ROIs, second, we apply the BEMD
algorithm to derive the sublayers BIMF from the ROIs in
question, and each BIMF represents a sublayer of the detected
ROI. The third step is to extract the features of each layer and
then combine them into a matrix. The last step is to classify
the input using the support vector machine. In this section,
we introduce the materials and methods used. First, we present
the used datasets, next by implementing algorithms.

A. Used Dataset

To train, test, and validate the proposed framework, we need
reference datasets. These datasets should be complete and
include all possible study cases. Among these, we have found
the three most well-known and public available databases,
which are INbreast [45] database, digital database of screening
mammography (DDSM) database [46], and Mammography
Image Analysis Society (MIAS) database [47], which are the
reference databases of most research work in the literature.
Below we present the three databases INbreast, DDSM, and
MIAS.

1) INbreast Database: INbreast [46] was collected at the
Breast Center in the Centro Hospitalar de São João, Porto,
under permission of both institutions: the National Committee
of Data Protection and the Hospital’s Ethics Committee,
between April 2008 and July 2010. This study concerned
115 cases (examination records) studies, 90 of them contain
two views (CC and Mediolateral oblique) of the left and right
breast separately. The 25 cases that stay are from women who
had a mastectomy and two views of only one breast were
included. The database contains 410 mammography images.
They were digitized at 70 μm and 14-bit depth pixels. The
digitizer used is the SIEMENS Novation FFDM Digital Mam-
mography. In addition, contextual description (digitization
dates, the American College of Radiology (ACR), Bi-Rads,
type abnormalities, etc.). Information on types of suspicious
regions (a cluster of MCs or a mass). Fig. 1 shows an example
of mammography image from INbreast database. More infor-
mation regarding the INbreast database is provided in [45].

2) DDSM Database: The DDSM [47] was collected by
cooperation between three institutions, which are the Uni-
versity of South Florida, the Massachusetts General Hospital
(MGH), and the Sandia National laboratories. This database
contains 2620 examination records (complete screening mam-
mograms) collected at four institutions: Louis Medical Center
(WU), MGH, Washington University of St and Sacred Heart
Hospital (SH), and Wake Forest University School of Medicine
(WFU), between October of 1988 and February of 1999. For
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Fig. 1. Example of mammography study from INbreast database.

Fig. 2. Example of mammography study from DDSM database.

Fig. 3. Example of mammography study from MIAS database.

each patient in the participant, the examination contains two
mammogram views: The mediolateral oblique (MLO) views
and the CC views of the right and left breasts separately. Mam-
mograms were digitized at 50 μm and 12-bit depth pixels. The
digitizers used are DBA, HOWTEK, and LUMISYS. In addi-
tion, the database contains contextual descriptions (digitizer,
digitization dates, acquisition, patient age, etc.) and radiolo-
gist report. The mammograms containing abnormalities (have
associated “ground truth” pixel-level) come with a manual
segmentation by radiologist and abnormalities assessment (a
mass or cluster of MC, benign or malignant). Fig. 2 shows
an example of mammography image from DDSM database.
More information regarding the DDSM database is provided
in [46].

3) MIAS Database: The MIAS [43] is an organization of
research groups in the U.K. interested in understanding and
studying mammograms. It has collected a dataset of digital
mammograms, from 161 patients taken from the U.K. National
Breast Screening Program (U.K.) have been participated in
this study. The database contains 322 screening mammograms.
This dataset contains only MLO views of the left and right
breasts. Mammography was digitized with a scanning micro
densitometer at a resolution of 50 μm × 50 μm and 8-bit depth
pixel. Mammography images have been reduced to 200-μm
pixels. The database also includes radiologists’ “ground truth-
markings” at the locations of any abnormalities that may be
present. Fig. 3 shows an example of mammography image
from MIAS database. More detail about the MIAS database is
provided in [47].

B. K-Fold Cross-Validation

Training and testing the parameters of a prediction function
on the same dataset is a methodological error: a model that

would repeat the labels of the samples we have just seen would
have a perfect score but could not predict anything useful
on a new dataset. This case is called overfitting. Therefore,
to avoid this problem, it is common during the building of
a machine learning model (supervised) to keep a part of the
dataset for tests. Therefore, in this work, we have used a ten-
fold cross-validation technique to avoid overfitting.

C. Proposed Methodology
When suspicious lesions have been detected in a breast

using a mammogram, additional examinations are necessary to
determine whether they are cancer or not. For this, doctors per-
form a sample of the lesion, that is to say, a biopsy. Generally,
it is very difficult to know the basis of mammograms whether
a lesion is cancerous or not. For this, it is necessary to study
the tissues of the lesion directly under the microscope, which
makes it possible to see whether cancer cells are present or
not. Therefore, it is necessary to take a tissue sample, different
techniques exist (samples through the skin; ultrasound-guided
biopsy; stereotaxic biopsy), and the choice of one or another
depends mainly on the location of the lesion and its size.
Although breast biopsies have generally been considered safe,
they have certain risks, including bleeding; infection; swelling,
and the appearance of bruises on the breast; a scar may
remain visible after the breast has healed; also, a change
in the appearance of the breast may be noticed, depending
on the amount of tissue removed by doctors. Additionally,
there is a slight risk that the biopsy result is falsely negative
(that is, the test result is negative, but it is an error and
there is really cancer). A false-negative result is inversely
proportional to the amount of tissue removed. That is to say,
in order to minimize the false-negative rate, if the amount
of tissue removed is important. This implies an additional
doubt about the exciting ones. Faced with these drawbacks,
several research studies have focused on automating breast
cancer diagnosis. On our part, in this work, we propose a
very important new technique, which allows examining the
suspect tissue in the mammography image and without having
to resort to the biopsy. The strong point of the proposed
approach implemented is the BEMD algorithm. The BEMD
technique allows us to derive several layers of the same ROI;
this allows us to analyze the 2-D image as being a 3-D image.
The principle of the BEMD technique makes it possible to
extract the different levels of BIMFs in the region in question;
each level of BIMFs contains an additional texture detail of
the detected ROI. Formally, each BIMF represents a layer
and the residue is the last layer. Textural features selected
from the obtained layers of the same region then are grouped
together in a single vector. These vectors are the SVM-based
input parameters of the SVM-based classification algorithm to
classify them as “normal” or “abnormal.”

1) Defining ROI: The aim of this work is to automate
the assessment of the suspect regions detected. Therefore,
first, we extract the ROIs based on our previous modified
K -means algorithm [1] in order to classify them later. Figs. 6,
7, and 9 show three examples of suspect regions detected.
Traditional classification techniques (by extracting features of
the region under consideration and implementing supervised
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Fig. 4. Steps of the proposed method.

learning algorithms) have given good results, except that these
results are too sensitive to the features extracted from detected
ROIs, especially in the case where there are details hidden
behind layers with lower or higher intensity levels. In this
article, we have proposed a technique to solve this drawback,
by decomposing the ROIs into several sublayers based on the
BEMD algorithm in order to be able to describe these ROIs
as much as possible. See four example listed in Figs. 9–12.
Therefore, instead of classifying the ROI directly, we derive it
into several layers (BIMFs); each layer contains specific detail.
The combination of features layers in a matrix has improved
the description of the region in question. Fig. 4 shows the steps
of the proposed approach and Fig. 5 shows the architecture of
our proposed approach.

2) Feature Extraction: After the ROIs have been detected
and BEMD applied to derive sublayers (BIMFs levels) from
the ROI into consideration. The next step is to extract
the textural features from each layer using one of the
following four well-known families. The Haralick features
based on those matrices (Haralick), Gray-Level Cooccur-
rence Matrices (GLCM) [48], Gray-Level Run-Length Matri-
ces (GLRLM) [49] or histograms of local binary patterns
(LBPH) [50]. The features have been extracted from the layers,
each layer represented by a single vector. The vectors of
the same ROI have combined in a matrix (V1, V2, . . . , Vn)
corresponding the layers (IMF1, IMF2, . . . , IMFn, Residue)
describing a single ROI. These matrices are the input parame-
ters of various classifiers.

3) Classifier Implimented: Mammography image classifi-
cation plays an important role in breast cancer screening
and diagnosis. Therefore, the images must be classified with
maximum accuracy. Given the major difficulty of this task,
as it is subjective and highly dependent on professional and

human expertise. Many types of research have focused on
developing automated classification methods. In this article,
we propose a framework based on SVM classifier types,
with a new technique for extracting features of ROI using
the BEMD algorithm to describe in detail ROI, and then
obtain best classification accuracies. The traditional SVM is
a nonprobability, linear or nonlinear kernel. In practice, we are
going to implement an SVM with a nonlinear kernel that is
the radial basis function (RBF), also tuning the two important
hyperparameters of SVMs, C and gamma. The classification
step goes through two phases: a learning phase and a testing
phase. The learning phase constructs a model that will classify
future unknown data. In the test phase, we will use the
structure created previously to classify our unknown samples,
and finally, we can calculate the accuracy of the classifier.

IV. EXPERIMENTAL RESULT ANALYSIS ON USED DATASET

Accurate breast tumor assessment of malignant or benign
remains a challenging task actually. Although many CAD
systems based on mammograms have been developed in order
to assist radiologists. The classification stage represents a very
crucial task in the CAD system development chain. Classi-
fication accuracy, using supervised classification algorithms
strongly depends on using descriptors. Extracting features
directly from the ROIs in question then applying a supervised
classifier has almost become stationary and gives too close
results in several previous works. Therefore, in this work,
we applied the BEMD algorithm to derive several intensity
levels (BIMFs) from ROIs. Consequently, each BIMF (layer)
contains an additional detail. The next step is to extract
the descriptors from each layer and then combine them get
a matrix (V1, V2, . . . , Vn) that describes the ROI in con-
sideration. These matrices are the input parameters of our
classifier later. On the other hand, highly supervised learning
algorithms were widely used in the field of classification
of mammographic images. For this, and after studying the
advantages and the disadvantages of these algorithms; we
have used the SVM classifier as the best one. To evaluate the
effectiveness of the proposed framework, we should apply it
to large-scale datasets. Therefore, we have applied it to three
publicly available datasets that are frequently used in breast
cancer studies. The first one is INbreast [45], the second one
is Digital Database for Screening Mammography [46], and the
third one is MIAS database [47]. From the INbreast dataset,
we have used 108 mammograms containing benign and
malignant masses; from the DDSM database, we have used
1700 mammograms containing benign and malignant masses;
and from the MIAS database, we have used 115 mammo-
grams containing benign or malignant masses. Tables I and II
include statistical information about using datasets.

A. Training Results
To validate the proposed method, we have built three

models, which are trained in three different databases. As the
used databases are not divided into subsets for learning and
subsets for testing, we have used the cross-validation technique
ten-fold to minimize over-learning. The following are the three
proposed models.
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Fig. 5. Proposed framework architecture for classifying breast abnormalities using mammography images.

TABLE I

STATISTICS ABOUT USING DATASETS

TABLE II

STATISTICS ABOUT USING ROIS EXTRACTED FROM USED DATASETS

1) Results on INbreast Dataset: This section describes a
classifier model built using the INbreast database [45], which
contains 115 patient records. In this study, we are interested
in benign and malignant cases. Therefore, we have used
59 benign cases and 49 malignant cases. Knowing that in
the INbreast database, we have two views CC and Medio-
lateral oblique (MLO) for each breast. Therefore, to classify
a mammogram, we use either CC view or MLO view for the
same breast. In addition, some patients contain tumors in both
breasts; in this case, we treat each breast independently of the
other, because the goal is to diagnose each breast separately
using a mammogram. Table III below shows the quantitative

Fig. 6. Example 1: ROIs detected using DDSM database.

Fig. 7. Example 2: ROIs detected using MIAS database.

results obtained in detail. To summarize, the model achieved
an AUC accuracy of 0.9832 ± 0.0039 using BEMD (multiple
features), or an AUC accuracy of 0.9463 ± 0.0049 using single
features. Fig. 13 shows the obtained ROC curves averaged
over ten folds using the INbreast dataset and multiple features
extracted based on the BEMD algorithm against single features
extracted directly from ROI and SVM classifiers.

2) Results on DDSM Dataset: This section describes a
classifier model built using the DDSM database [45], which
contains 2620 patient records. In this study, we are interested
in benign and malignant cases. Therefore, we have used
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Fig. 8. Example 3: ROIs detected using MIAS database.

Fig. 9. Example 3: decomposed BEMD components from malignant ROI
segmented from the mammography image named mdb184 in MIAS dataset
in the order of high to low-level intensities from left to right in each row.

Fig. 10. Example 2: decomposed BEMD components from benign ROI
segmented from the mammography image named mdb019 in the MIAS
dataset, in the order of high to low-level intensities from left to right in
each row.

850 benign cases and 850 malignant cases. Knowing that in
the DDSM database, we have both views: CC and Mediolateral
oblique (MLO) for each breast. Therefore, to classify a mam-
mogram, we have used a CC view or an MLO view for the
same breast. In addition, some patients contain tumors in both
breasts; in this case, we treat each breast independently of the
other, because the goal is to diagnose each breast separately
using a mammogram. Tables I–V shows the quantitative results
obtained in detail. To summarize, the model achieved an AUC
accuracy of 0.9820 ± 0.0040 using BEMD (multiple features),
or an AUC accuracy of 0.9428 ± 0.0045 using single features.
Fig. 14 shows the obtained ROC curves averaged over ten
folds using the DDSM dataset and multiple features extracted
based on the BEMD algorithm against single features extracted
directly from ROI and SVM classifiers.

3) Results on MIAS Dataset: In this section, we have built
a model trained using the MIAS dataset [47]. In this dataset,
we have 322 mammography images, including 63 benign
mammography images and 52 malignant mammography
images. To classify a mammogram, we have used the profile
view because in the MIAS database, we only have the profile
view for each breast. Table V below shows the quantitative

Fig. 11. Example 3: decomposed BEMD components from malignant ROI
segmented from the mammography image named case0089 in the DDSM
dataset, in the order of high to low-level intensities from left to right in
each row.

Fig. 12. Example 4: decomposed BEMD components from benign ROI
segmented from the mammography image named case4121 in the DDSM
dataset, in the order of high to low-level intensities from left to right in
each row.

results obtained in detail. To summarize, this model achieved
an AUC of 0.9803 ± 0.0035 using BEMD, against an AUC of
0.9404 ± 0.0041 using single features. Fig. 15 shows obtained
ROC curves averaged over ten folds by using the MIAS dataset
and multiple features extracted based on the BEMD algorithm
against single features extracted directly from ROI and SVM
classifiers.

B. Testing Results

Tables VI–VIII below show the obtained results in the
testing phase using the three training models formed, which
are, respectively, the model trained on the INbreast dataset; the
model trained on the DDSM dataset, and the model trained on
the MIAS dataset. The ROI descriptors have been selected
using both modalities mentioned previously: the first one,
by using simple features, which are directly extracted from
the ROIs detected. The second one, by using multiple features,
which are extracted based on BEMD. Then, in the last stage,
the SVM was applied as a classifier. An observable improve-
ment in the results obtained results using the new technique
implemented in this article can be stated, in which the features
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TABLE III

MASS DIAGNOSIS PERFORMANCE AVERAGE AUC (95% CI1) AND STANDARD ERROR, USING INBREAST DATASET

Fig. 13. Obtained ROC curves averaged over ten folds using INbreast dataset and: 1) multiple features extracted based on BEMD (left) and 2) single features
extracted directly from ROIs (right).

TABLE IV

MASS DIAGNOSIS PERFORMANCE–AVERAGE AUC (95% CI) AND STANDARD ERROR, USING DDSM DATASET

have been extracted based on BEMD, compared to the classic
method in which the features were extracted directly from
the suspicious region in question. We distinguish between two
kinds of obtained results: on the one hand, results obtained
using the classical method of extracting characteristics directly
from the ROIs, and the new method based on BEMD.

Table VI reveals the results obtained using the model trained
on the DDSM dataset, then testing on INbreast and MIAS

datasets. First, in INbreast: using single features (classical
method), we obtained sensitivity, specificity, accuracy, and
an AUC, which are, respectively, 0.9437, 0.9461, 0.9428,
and 0.9419. Using multiple features (based on BEMD),
we obtained a specificity, sensitivity, precision, and an AUC,
which are, respectively, 0.9825, 0.9830, 0.9815, and 0.9803.
Second, in the MIAS dataset: using the single features we
obtained sensitivity, specificity, accuracy, and an AUC, which
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TABLE V

MASS DIAGNOSIS PERFORMANCE–AVERAGE AUC (95% CI) AND STANDARD ERROR, USING MIAS DATASETS

Fig. 14. ROC curves averaged over ten folds using DDSM dataset and: 1) multiple features extracted based on BEMD (left) and 2) single features extracted
directly from ROIs (right).

Fig. 15. Obtained ROC curves averaged over ten folds using MIAS dataset and: 1) multiple features extracted based on BEMD (left) and 2) single features
extracted directly from ROIs (right).
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TABLE VI

RESULTS OBTAINED IN INBREAST AND MIAS DATASET, USING THE MODEL TRAINED ON THE DDSM DATASET

TABLE VII

RESULTS OBTAINED IN INBREAST AND DDSM DATASET, USING THE MODEL TRAINED ON THE MIAS DATASET

TABLE VIII

RESULTS OBTAINED IN MIAS AND DDSM DATASETS, USING THE MODEL TRAINED ON THE INBREAST DATASET

are, respectively, 0.9437, 0.9461, 0.9428, and 0.9419. With
multiple features, we obtained specificity, sensitivity, accuracy,
and an AUC, which are, respectively, 0.9825, 0.9830, 0.9815,
and 0.9803.

Table VII reveals the results obtained using the model
trained on the MIAS dataset, then testing on INbreast and
DDSM datasets. First, in INbreast: using the single features
we have obtained sensitivity, specificity, accuracy, and AUC,
which are, respectively, 0.9437, 0.9461, 0.9428, and 0.9419.
Using multiple features, we have obtained a specificity, sensi-
tivity, accuracy, and an AUC, which are, respectively, 0.9825,
0.9830, 0.9815, and 0.9803. Second, in the DDSM dataset:
using the single features we have obtained a sensitivity, speci-
ficity, accuracy, and an AUC, which are, respectively, 0.9437,
0.9461, 0.9428, and 0.9419. With multiple features, we have
obtained a specificity, sensitivity, accuracy, and an AUC, which
are, respectively, 0.9825, 0.9830, 0.9815, and 0.9803.

Table VIII presents the results obtained using the model
trained on the INbreast dataset, and then tested on the DDSM
and MIAS datasets. First, in DDSM: using the single features
we have obtained a sensitivity, specificity, accuracy, and an
AUC, which are, respectively, 0.9437, 0.9461, 0.9428, and
0.9419. Using multiple features, we have obtained a specificity,

TABLE IX

OBTAINED PERFORMANCE, USING THE PROPOSED

METHOD IN THE DIFFERENT DATASETS

sensitivity, accuracy, and an AUC, which are, respectively,
0.9825, 0.9830, 0.9815, and 0.9803. Second, in the MIAS
dataset: using the single features we have obtained a sensi-
tivity, specificity, accuracy, and an AUC, which are, respec-
tively, 0.9437, 0.9461, 0.9428, and 0.9419. With multiple
features, we have obtained a specificity, sensitivity, accuracy,
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TABLE X

QUANTITATIVE OBTAINED RESULTS OF THE PROPOSED METHOD COMPARED TO RELATED PREVIOUS WORKS

and an AUC, which are, respectively, 0.9825, 0.9830, 0.9815,
and 0.9803.

V. DISCUSSION

In this article, a novel computer-aided diagnosis system for
the evaluation of abnormalities on mammograms has been
presented. A novel strategy was proposed to drive sublayers
from the ROIs according to the intensity of the level. The pro-
posed study has shown that BEMD and SVM algorithms can
be used to automate classifying breast abnormalities. It also
represents an effective diagnostic tool to help radiologists
make a good diagnosis. Detected ROIs in the early stages
due to screening mammography have similar appearances
with normal tissue; it is not like the obvious messes, with
heterogeneous appearances and well-defined margins, whether
they are malignant or benign. This similarity leads to major
difficulties to make a precise diagnosis. Supervised learning
algorithms are currently known in various classification and
recognition operations. Except that, automating feature extrac-
tion to well describe ROIs (which are not limited to those
conceived by humans) is a crucial step. Allows us to precisely
classify various radiological appearances of cancer. For this,
applying the BEMD algorithm makes it possible to observe
several levels of intensity and textures, each level (BIMF)
was considered as a layer, the cooperation of the layers and
the study of the dependencies between them allow giving a
good description of ROIs. Therefore, the classification step
becomes obvious. SVM classifier and BEMD algorithm could
contribute to the diagnosis of breast cancer in mammography
by increasing the classification performance of tumors and by
reducing unnecessary biopsies. To train, test, and validate the
proposed framework, three public databases are used, which
are called INbreast, DDSM, and MIAS. The use of diversified
datasets (datasets have been scanned with different scanners
and with different resolutions) is important to validate. The
robustness of the proposed method. Obtained quantitative
results in the three datasets are presented in Table IX below:

Table IX, summarizes the obtained performance. We have
found that the proposed framework gives high performance
and it is stable in the case where we have used BEMD.
Whatever data has used either for training or for the test,

as well as whatever the technique used (Haralick, GLCM,
GLRLM, LBPH) for ROIs feature extraction. Due to the
diversified data, the proposed method has shown excellent per-
formance in various trainings, testing, and validation datasets.
Therefore, the robustness of the proposed method lie in the
implemented BEMD technique, which allows one to have
as much detail for each region to make the classification
task as easy as the data. The proposed framework has the
following characteristics: First, our method has shown signif-
icant performance in the classification of ROIs. This means
that it can be approved as a technique to automate classify
suspect regions in mammography screening, without having to
resort to additional examinations and, especially, unnecessary
biopsies. Significantly increasing the diagnostic accuracy of
radiologists by overcoming the problems of traditional CAD.
Second, the proposed method has shown that detecting and
diagnosing breast cancer only by mammography screening
could help reduce breast cancer and improve diagnostic results.
Third, the diagnostic performance of the method used has
less affected by breast density than that of radiologists, thanks
to the implemented BEMD algorithm, which allows multiple
layers of the intensity of the same ROIs to be exploited.
Generally, radiologists’ precision decreased with dense breasts,
because the dense parenchymal tissue is more likely to mask
suspect regions during mammography examinations [51]. The
difference in radiological sensitivity between dense and fatty
breasts was much greater than that of our method, so it can
lead to a significant improvement in diagnostic performance
assisted by radiologists in general and dense breasts in partic-
ular. Finally, automatic diagnosis instead of surgical biopsy
for breast lesions leads to a reduction in the overall costs
of treatment [52]. This reduction has been estimated to be
between 40% and 85% [52]. Many similar studies on a CAD
system for breast cancer diagnosis has recently been published
[22], [25], [53]–[55] these studies allow us to make a com-
parison in order to assess the performance of our Framework.
Table X below shows a comparison of the obtained results in
this work and the results of previous works. Our approach
is slightly better. In another word, a comparison between
obtaining results using single features selected directly from
ROI, and multiple features selected based on BEMD shows the
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relevance of the BEMD paradigm for the task. In the proposed
framework, the classification performances based on BEMD
and SVM paradigm better results than a single feature with
SVM classifier.

VI. CONCLUSION

In this proposal, we addressed the problem of breast cancer
diagnosis using mammography imaging screening images. The
objective is to automate the diagnosis based on mammography
screening alone and without having to resort to additional
examinations, especially unnecessary biopsies in cases where
the detected ROIs are benign. The proposed framework, which
is based on the BEMD algorithm to decompose ROI con-
sidered into layers (BIMFs) and the SVM algorithm for the
classification task, has shown robustness despite the diversity
of the dataset used for training or testing. As well as the results
obtained have compared with others recently published in the
literature and they showed a significant improvement in the
diagnostic performance of breast cancer.
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